

Water Security – our biggest challenge for the 21st century... Water, food, and energy are interrelated and interdependent: It takes energy and water to produce food; It takes water (and food!) to produce energy; The production of energy (and food) contaminates water; and It takes energy to extract, purify and distribute water, and to purify contaminated water. The water-food-energy nexus...

Carin Bosmar

Water Security" defined (UN-Water, 2013) "the capacity of a population to safeguard

- "the capacity of a population to safeguard sustainable <u>access to adequate quantities</u> of <u>acceptable quality water</u>
 - for sustaining livelihoods, human well-being, and socioeconomic development,
 - for ensuring protection against water-borne pollution and water-related disasters, and

Carin Bosmar

- > for preserving ecosystems,
- In a <u>climate of peace and political stability</u>

TABLE 17.1 Fresh Water of the Hydrosphere				
Parts of the Hydrosphe	ere Volume of Fresh Water (km ³)	Share of Total Volume of Fresh Water (percent)	Rate of Water Exchange	
ce sheets and glaciers	24,000,000	84.945	8000 years	
Groundwater	4,000,000	14.158	280 years	
Lakes and reservoirs	155,000	0.549	7 years	
Soil moisture	83,000	0.294	1 year	
Water vapor in the atmo	sphere 14,000	0.049	9.9 days	
River water	1,200	0.004	11.3 days	
Total	28,253,200	100.000	100 Mar 10	

Pollutants from Human Activity and their effects on Water Quality

Human Activity	Main pollutants	Effects of pollution		
Urbanisation: Domestic waste disposal Concentrated habitation & untreated sewage disposal inadequate sanitation	Nitrates Phosphates Pathogens	Pathogens cause typhoid, cholera, gastro-enteritis, nutrients cause eutrofication		
Industrial waste water discharge and waste disposal, including Fossil fuel burning for power, heating and transport	Heavy metals Organics Carcinogens	Human & Aquatic organisms disease / death = remove assimilative capacity		
Mining waste water discharge	Large scale land use Salts and acid mine dranage Heavy metals, incl radio-active	Erosion Salination Cumulative effects		
Farming – organised and mechanised agriculture	Nutrients Pesticides Fertilisers Silt and salt	Eutrification, Erosion , sedimentation and loss of storage volume in dams Salination		

Global Water Security Report: One of the greatest challenges regarding water security is the lack of knowledge regarding its social, political, economic and environmental components, but most importantly, regarding the basic sciences determining its availability and quality Ignorance of the basics results in incorrect identification of root causes of problems, and the implementation of ineffective or counterproductive "interventions" In the Ganges Basin, due to a lack of understanding of the basic hat the solution of the system, decision-makers believed that the solution was to dam water in Nepal, where, in fact, the solution revolves around managing groundwater abstraction and recharge in the Ganges floodplain.

- Water-related problems, when combined with poverty, social tensions, environmental degradation, ineffectual leadership, and weak political institutions, will result in social disruptions that can result in state failure.
- Transboundary water (both surface and groundwater resources) management intersect several issues, including water availability for agriculture, hydropower, treatment of wastewater, mining, etc.
- Policy coherence and integration across political borders is critical, but often lacking

Silo-ism in governance and conflicting needs

- DWS: "No further irrigation from the Vaal River catchment"
- DLA: "Establishment of irrigation schemes is critical for the upliftment of historically disadvantaged and resource-poor farmers and will enhance food security"
- DME: "Addressing our energy needs will partly be met by the establishment of irrigation projects for the production of crops for bio-fuels"

<section-header><section-header><list-item><list-item><list-item>

2) Strengthen and Improve Water Governance

- Government national, provincial, local
- Corporate governance implementation of King III
- Ensure the incorporation of sustainability principles into practical policy, regulation, procedure and guidelines
- Change funding mechanisms
- Facilitate a culture of change
- Ensure improved service delivery at local level
- Ethics of systems and processes
- Develop mechanisms and tools to facilitate implementation of BPEO

2) Strengthen and Improve Water Governance

- Optimise water resource allocation and regulation
 Development of streamlined authorisation procedures
- Inderstand the differentiated concept of "pollution" and implement mechanisms to prevent pollution of surface and groundwater resources
 - Science-based and reasonable thresholds and targets for disposal, discharge and emissions
- Increase mechanisms to ensure water conservation and create a water-saving society
- Assistance with practical interpretation and application of legislation

